SCIENTIFIC HIGHLIGHTS

22 March 2013

fig4

R. Guzman, J. Gazquez, V. Rouco, A. Palau, C. Magen, M. Varela, J. Arbiol, X. Obradors, and T. Puig
Appl. Phys. Lett. 102, 081906 (2013)

In this letter we use high resolution scanning transmission electron microscopy to study epitaxial YBa2Cu3O7−δ (YBCO) nanocomposite thin films. We find that twin boundaries (TB) in YBCO nanocomposite thin films are disturbed by the presence of secondary phase nanoparticles as well as by intergrowths. Secondary phases promote the nucleation of TBs and, at the same time, result in bending, decreasing and changing the TB's spacing. On the other hand, the local strain ensuing from the partial dislocation associated to Y248 and Y125 intergrowths break the vertical coherence of TBs. This interaction results in a complex domain structure where twin boundary coherence is no longer satisfied and twin spacing is reduced down to a few nanometers precluding vortex channeling at low temperatures.
Hits: 8108
Sustainable energy conversion & storage systems

Strain-driven broken twin boundary coherence in YBa2Cu3O7−δ nanocomposite thin films



Also at ICMAB

  • Noncovalently Linked Metallacarboranes on Functionalized Magnetic Nanoparticles as Highly Efficient, Robust, and Reusable Photocatalysts in Aqueous Medium

    Information
    20 April 2021 139 hit(s) Energy
    A successful homogeneous photoredox catalyst has been fruitfully heterogenized on magnetic nanoparticles (MNPs) coated with a silica layer, keeping intact its homogeneous catalytic properties but gaining others due to the easy magnetic separation and recyclability. The amine-terminated magnetic silica nanoparticles linked noncovalently to H[3,3′-Co(1,2-C2B9H11)2]− (H[1]), termed MSNPs-NH2@H[1], are highly stable and do not produce any leakage of the photoredox catalyst H[1] in water. The magnetite MNPs were coated with SiO2 to provide colloidal stability and silanol groups to be tethered to amine-containing units.
  • Large-Scale Soft-Lithographic Patterning of Plasmonic Nanoparticles

    Information
    16 April 2021 214 hit(s) Energy
    Micro- and nanoscale patterned monolayers of plasmonic nanoparticles were fabricated by combining concepts from colloidal chemistry, self-assembly, and subtractive soft lithography. Leveraging chemical interactions between the capping ligands of pre-synthesized gold colloids and a polydimethylsiloxane stamp, we demonstrated patterning gold nanoparticles over centimeter-scale areas with a variety of micro- and nanoscale geometries, including islands, lines, and chiral structures (e.g., square spirals).
  • Disentangling Electron–Phonon Coupling and Thermal Expansion Effects in the Band Gap Renormalization of Perovskite Nanocrystals

    Information
    11 March 2021 273 hit(s) Energy
    The complex electron–phonon interaction occurring in bulk lead halide perovskites gives rise to anomalous temperature dependences, like the widening of the electronic band gap as temperature increases. However, possible confinement effects on the electron–phonon coupling in the nanocrystalline version of these materials remain unexplored. Herein, we study the temperature (ranging from 80 K to ambient) and hydrostatic pressure (from atmospheric to 0.6 GPa) dependence of the photoluminescence of ligand-free methylammonium lead triiodide nanocrystals with controlled sizes embedded in a porous silica matrix.
  • Laser fabrication of hybrid electrodes composed of nanocarbons mixed with cerium and manganese oxides for supercapacitive energy storage

    Information
    05 March 2021 276 hit(s) Energy
    Novel composite materials are being investigated for improving the energy storage performance of electrochemical capacitors. For this goal, synergistic effects via the combination of diverse types of materials are crucial. In this work, electrodes composed of reduced graphene oxide, multiwall carbon nanotubes, as well as cerium and manganese oxides were fabricated through reactive inverse matrix-assisted pulsed laser evaporation (RIMAPLE).
  • Predicting the photocurrent–composition dependence in organic solar cells

    Information
    02 March 2021 305 hit(s) Energy
    The continuous development of improved non-fullerene acceptors and deeper knowledge of the fundamental mechanisms governing performance underpin the vertiginous increase in efficiency witnessed by organic photovoltaics. While the influence of parameters like film thickness and morphology are generally understood, what determines the strong dependence of the photocurrent on the donor and acceptor fractions remains elusive.

INSTITUT DE CIÈNCIA DE MATERIALS DE BARCELONA, Copyright © 2020 ICMAB-CSIC | Privacy Policy | This email address is being protected from spambots. You need JavaScript enabled to view it.