Self-Assembly of an Organic Radical Thin Film and Its Memory Function Investigated Using a Liquid-Metal Electrode
28 September 2018

Diego Gutiérrez, Sergi Riera-Galindo, M. R. Ajayakumar , Jaume Veciana , Concepció Rovira, Marta Mas-Torrent , and Núria Crivillers*. J. Phys. Chem. C2018122 (31), pp 17784–17791

DOI: 10.1021/acs.jpcc.8b04170

In this work, the deposition of a persistent organic radical by thermal evaporation on Au, Pt, and graphene is performed. The impact of the deposition parameters and the nature of the substrate on the molecular organization within the deposited film are investigated. The nonplanarity of the molecule and the role of the molecule–molecule and molecule–substrate interactions are discussed. UV photoelectron spectroscopy experiments demonstrate that the radical character, and hence its magnetic and redox properties, is preserved on the three surfaces. The optimized films are electrically characterized by top-contacting the film/substrate system using a liquid metal that permits achievement of a soft contact avoiding damaging the layer. The hysteretic current versus voltage curves obtained from the electrical characterization point to the potential applicability of the studied system as an organic memory. Moreover, the demonstrated feasibility of using a liquid metal is an appealing approach toward the preparation of flexible devices.


Hits: 1903
Oxides for new-generation electronics

Self-Assembly of an Organic Radical Thin Film and Its Memory Function Investigated Using a Liquid-Metal Electrode

Also at ICMAB

  • Tuning the tilting of the spiral plane by Mn doping in YBaCuFeO5 multiferroic

    23 April 2021 84 hit(s) Oxides
    The layered perovskite YBaCuFeO5 (YBCFO) is considered one of the best candidates to high-temperature chiral multiferroics with strong magnetoelectric coupling. In RBaCuFeO5 perovskites (R: rare-earth or Y) A-site cations are fully ordered whereas their magnetic properties strongly depend on the preparation process. They exhibit partial cationic disorder at the B-site that generates a magnetic spiral stabilized through directionally assisted long range coupling between canted locally frustrated spins.
  • New Sensitive and Selective Chemical Sensors for Ni2+ and Cu2+ Ions: Insights into the Sensing Mechanism through DFT Methods

    09 April 2021 177 hit(s) Oxides
    We report the synthesis and theoretical study of two new colorimetric chemosensors with special selectivity and sensitivity to Ni2+ and Cu2+ ions over other metal cations in the CH3CN/H2O solution. Compounds (E)-4-((2-nitrophenyl)diazenyl)-N,N-bis(pyridin-2-ylmethyl)aniline (A) and (E)-4-((3-nitrophenyl)diazenyl)-N,N-bis(pyridin-2-ylmethyl)aniline (B) exhibited a drastic color change from yellow to colorless, which allows the detection of the mentioned metal cations through different techniques.
  • Silicon nanowires as acetone-adsorptive media for diabetes diagnosis

    06 April 2021 257 hit(s) Oxides
    Early detection of diabetes, a worldwide health issue, is key for its successful treatment. Acetone is a marker of diabetes, and efficient, non-invasive detection can be achieved with the use of nanotechnology. In this paper we investigate the effect of acetone adsorption on the electronic properties of silicon nanowires (SiNWs) by means of density functional theory.
  • Soft‐Chemistry‐Assisted On‐Chip Integration of Nanostructured α‐Quartz Microelectromechanical System

    30 March 2021 221 hit(s) Oxides
    The development of advanced piezoelectric α‐quartz microelectromechanical system (MEMS) for sensing and precise frequency control applications requires the nanostructuration and on‐chip integration of this material on silicon material.
  • Critical Effect of Bottom Electrode on Ferroelectricity of Epitaxial Hf0.5Zr0.5O2 Thin Films

    26 March 2021 258 hit(s) Oxides
    Epitaxial orthorhombic Hf0.5Zr0.5O2 (HZO) films on La0.67Sr0.33MnO3 (LSMO) electrodes show robust ferroelectricity, with high polarization, endurance and retention. However, no similar results have been achieved using other perovskite electrodes so far. Here, LSMO and other perovskite electrodes are compared.

INSTITUT DE CIÈNCIA DE MATERIALS DE BARCELONA, Copyright © 2020 ICMAB-CSIC | Privacy Policy | This email address is being protected from spambots. You need JavaScript enabled to view it.