Press

New approach in laser fabricated electrodes for supercapacitive energy storage

Researchers have used a combination of cerium oxide nanoparticles and manganese metal organic precursor in the laser targets for the synthesis of a hybrid material. The used laser deposition technique allowed the versatile fabrication of high-performance supercapacitor electrodes.

Anna
27 January 2021
Hybrid composites formed by reduced graphene oxide and carbon nanotubes coated with cerium and manganese oxides

Supercapacitors are important for their fast and reversible use of energy, high power density, long cycle life, low maintenance cost, and environment-friendly nature. Measurements at the MIRAS beamline of ALBA allowed the identification of the organic part of the composite, especially the chemical groups present at the structure of graphene and carbon nanotubes, which highly influence the functional properties of the material.

The technological advance of portable consumer electronics, wearable medical devices, electric vehicles, smart electric grids and the emerging Internet of Things (IoT) requires innovation in energy storage technologies. Without doubts, electrochemical energy storage technologies play a major role in this subject.

In particular, supercapacitors are important for their fast and reversible use of energy, high power density, long cycle life, low maintenance cost, and environment-friendly nature.

Novel composite materials are being investigated for improving the energy storage performance of these electrochemical capacitors. For this goal, synergistic effects via the combination of diverse types of materials are crucial.

Researchers from the Institute of Materials Science of Barcelona, ICMAB-CSIC (Spain) from the Laser Processing Group; the National Institute for Materials Physics (Romania), the ALBA Synchrotron, and the National Institute for Lasers, Plasma and Radiation Physics (Romania), carried out laser deposition of hybrid composites containing reduced graphene oxide and carbon nanotubes coated with cerium and manganese oxides nanostructures, which allowed the versatile fabrication of high-performance supercapacitor electrodes. The obtained devices exhibited high volumetric capacitance and excellent stability after tens of thousands of charge–discharge cycles.

This is the first time a combination of cerium oxide (CeO2) nanoparticles and manganese (Mn) metal organic precursor are used in the laser targets for the synthesis of a hybrid material. The material is based on a synergistic combination of electric double layer nanocarbons and pseudocapacitive metal oxides. The obtained structure led to remarkable increase of the energy storage capability of the electrodes as compared to previous composites based on nickel (Ni) oxide nanoparticles.

The electrodes were fabricated through the reactive inverse matrix assisted pulsed laser evaporation (RI-MAPLE) technique, developed at ICMAB-CSIC by the Laser Processing Group, with Enikö György and Ángel Pérez del Pino.

The structure and composition of the obtained materials was carried out by means of Scanning Electron Microscopy – Energy Dispersive X-ray Spectroscopy (SEM-EDX), Transmission Electron Microscopy (TEM), X-ray Photoelectron Spectroscopy (XPS) as well as synchrotron-based Fourier-transform infrared spectroscopy and microscopy (FTIRM) at the MIRAS beamline of ALBA, which allowed a complete study of the organic part of the composite that belongs to the nanocarbon materials.

miras alba

Ibraheem Yousef at the MIRAS beamline of ALBA Synchrotron | Photo by Sergio Ruiz. 

“These chemical groups present extremely weak signal at conventional FTIR equipment and they remarkably impact on the electrical and electrochemical behavior of the electrode. The FTIR measurements made at MIRAS beamline were able to both identify the chemical bonds and study their spatial distribution along the deposited electrode”, explains Ibraheem Yousef, scientist responsible of the MIRAS beamline at ALBA Synchrotron.

These composite thin films are of special interest for their application in electrochemical energy storage, particularly in supercapacitors. Moreover, the developed methodology could be also applicable to batteries and chemical sensors.

graph figure

Figure. SR-FTIRM spectra of samples CNT-raw, GO-raw, CNT-Ce, GO-CNT-Ce 515 and GO-CNT-Ce-Mn-5152.

Reference:

Laser fabrication of hybrid electrodes composed of nanocarbons mixed with cerium and manganese oxides for supercapacitive energy storage.
Pablo García Lebière, Ángel Pérez del Pino, Guillem Domènech Domingo, Constantin Logofatu, Immaculada Martínez-Rovira, Ibraheem Yousef and Enikö György.
J. Mater. Chem. A, 2021, Advance Article. DOI: 10.1039/D0TA06756C

Download the Press Release in CAT, ESP, ENG

Hits: 2117

INSTITUT DE CIÈNCIA DE MATERIALS DE BARCELONA, Copyright © 2020 ICMAB-CSIC | Privacy Policy | This email address is being protected from spambots. You need JavaScript enabled to view it.