Mechanical Softness of Ferroelectric  180° Domain Walls
Oxides for new-generation electronics

Mechanical Softness of Ferroelectric 180° Domain Walls

Christina Stefani, Louis Ponet, Konstantin Shapovalov, Peng Chen, Eric Langenberg, Darrell G. Schlom, Sergey Artyukhin, Massimiliano Stengel, Neus Domingo, and Gustau Catalan.

Phys. Rev. X 10, 041001 – Published 1 October 2020
02 December 2020

Using scanning probe microscopy, we measure the out-of-plane mechanical response of ferroelectric 180° domain walls and observe that, despite separating domains that are mechanically identical, the walls appear mechanically distinct—softer—compared to the domains.

This effect is observed in different ferroelectric materials (LiNbO3BaTiO3, and PbTiO3) and with different morphologies (from single crystals to thin films), suggesting that the effect is universal. We propose a theoretical framework that explains the domain wall softening and justifies that the effect should be common to all ferroelectrics. The lesson is, therefore, that domain walls are not only functionally different from the domains they separate, but also mechanically distinct.

Hits: 333

Also at ICMAB

INSTITUT DE CIÈNCIA DE MATERIALS DE BARCELONA, Copyright © 2020 ICMAB-CSIC | Privacy Policy | This email address is being protected from spambots. You need JavaScript enabled to view it.