Iridium Oxide Redox Gradient Material: Operando X‑ray Absorption of Ir Gradient Oxidation States during IrOx Bipolar Electrochemistry
24 August 2021
Electrodeposited iridium oxide (K1.7IrO0.8 (OH)2.2 × 1.8 H2O; also called IrOx) is among the best substrates for neural growth, decreasing impedance and stimulating cell growth, when used as a connected electrode. Without direct contact, it has been proven to stimulate neurons through a bipolar mechanism related to the conducting character of the material in the presence of remote electric fields.
The remote wireless electrostimulation that arises from it is of large significance in clinical applications. Ionic intercalation simultaneous with iridium oxidation state changes at the induced IrOx cathode and the formation of a redox and ionic gradient at the IrOx substrate is envisaged as the most probable explanation for the observed effects on neural cell growth. This work shows the iridium state gradient using X-ray absorption spectroscopy (XAS) with significant electrochemical features and relaxation times that allow for a persistent effect in the material even after the electric field creating the induced dipole is switched off. It also shows correlated intercalated sodium gradients observed by semiquantitative energy-dispersive X-ray (EDX) analysis data. The bipolar effect is proven and yields new evidence for the behavior of other biocompatible neural growth substrates.
Hits: 584
Sustainable energy conversion & storage systems

Iridium Oxide Redox Gradient Material: Operando X‑ray Absorption of Ir Gradient Oxidation States during IrOx Bipolar Electrochemistry

Laura Fuentes-RodriguezLlibertat AbadLaura SimonelliDino Tonti, and Nieves Casañ-Pastor

J. Phys. Chem. C 2021,
Publication Date:July 27, 2021
DOI: 10.1021/acs.jpcc.1c05012

Also at ICMAB

  • Cobaltabis(dicarbollide) ([o-COSAN]−) as Multifunctional Chemotherapeutics: A Prospective Application in Boron Neutron Capture Therapy (BNCT) for Glioblastoma

    25 January 2022 162 hit(s) Biomaterials
    Purpose: The aim of our study was to assess if the sodium salt of cobaltabis(dicarbollide) and its di-iodinated derivative (Na[o-COSAN] and Na[8,8′-I2-o-COSAN]) could be promising agents for dual anti-cancer treatment (chemotherapy + BNCT) for GBM. Methods: The biological activities of the small molecules were evaluated in vitro with glioblastoma cells lines U87 and T98G in 2D and 3D cell models and in vivo in the small model animal Caenorhabditis elegans (C. elegans) at the L4-stage and using the eggs. Results: Our studies indicated that only spheroids from the U87 cell line have impaired growth after treatment with both compounds, suggesting an increased resistance from T98G spheroids, contrary to what was observed in the monolayer culture, which highlights the need to employ 3D models for future GBM studies.
  • Ultrafast Interface Charge Separation in Carbon Nanodot–Nanotube Hybrids

    18 January 2022 250 hit(s) Biomaterials
    Carbon dots are an emerging family of zero-dimensional nanocarbons behaving as tunable light harvesters and photoactivated charge donors. Coupling them to carbon nanotubes, which are well-known electron acceptors with excellent charge transport capabilities, is very promising for several applications.
  • Interfaces and Interphases in Ca and Mg Batteries

    14 January 2022 183 hit(s) Energy
    The development of high energy density battery technologies based on divalent metals as the negative electrode is very appealing. Ca and Mg are especially interesting choices due to their combination of low standard reduction potential and natural abundance.
  • Giant Thermal Transport Tuning at a Metal / Ferroelectric Interface

    27 December 2021 274 hit(s) Energy
    Interfacial thermal transport plays a prominent role in the thermal management of nanoscale objects and is of fundamental importance for basic research and nanodevices. At metal/insulator interfaces, a configuration commonly found in electronic devices, heat transport strongly depends upon the effective energy transfer from thermalized electrons in the metal to the phonons in the insulator.
  • Polylactide, Processed by a Foaming Method Using Compressed Freon R134a, for Tissue Engineering

    17 December 2021 264 hit(s) Biomaterials
    Fabricating polymeric scaffolds using cost-effective manufacturing processes is still challenging. Gas foaming techniques using supercritical carbon dioxide (scCO2) have attracted attention for producing synthetic polymer matrices; however, the high-pressure requirements are often a technological barrier for its widespread use. Compressed 1,1,1,2-tetrafluoroethane, known as Freon R134a, offers advantages over CO2 in manufacturing processes in terms of lower pressure and temperature conditions and the use of low-cost equipment.

INSTITUT DE CIÈNCIA DE MATERIALS DE BARCELONA, Copyright © 2020 ICMAB-CSIC | Privacy Policy | This email address is being protected from spambots. You need JavaScript enabled to view it.