Exact Long-Range Dielectric Screening and Interatomic Force Constants in Quasi-Two-Dimensional Crystals
26 November 2021

Electrons in insulating crystals polarize in response to an externally applied electric field, resulting in a partial suppression of the field amplitude; such a phenomenon is known as “dielectric screening.” While much effort has gone into developing a quantitative understanding of this behavior and its impact on materials properties, 2D crystals remain challenging to describe by means of established modeling strategies.

Analytical solutions for the idealized “strict 2D” limit do exist, but a fundamental theory that accounts for the “quasi-2D” nature of real layers is still missing. Here, we develop an exact theory of the long-range electrostatics in quasi-2D systems, enabling an accurate modeling of any physical property (such as interatomic forces at large distances) that depends on them.

Our main mathematical result consists of achieving a sound and compact decomposition of the Coulomb interactions between long-range and short-range contributions in the quasi-2D case, thereby extending and generalizing existing approaches and providing them with a solid foundation. To do this, we rely on only two simple and intuitive formal devices: the well-known image-charge method of classical electrostatics and the bisection formula of the hyperbolic trigonometric functions.

Our formalism provides a general platform for describing both intralayer and extralayer electrostatic interactions in 2D systems, with an applicability that goes well beyond the specifics of lattice dynamics. We expect our method to greatly facilitate the calculation of electron-phonon couplings and any other physical property (such as flexoelectricity) that requires a careful treatment of screening in two dimensions.

Hits: 362
Oxides for new-generation electronics

Exact Long-Range Dielectric Screening and Interatomic Force Constants in Quasi-Two-Dimensional Crystals

Miquel Royo and Massimiliano Stengel

Phys. Rev. X 11, 041027 – Published 8 November 2021

Also at ICMAB

  • Bulk photovoltaic effect in hexagonal LuMnO3 single crystals

    31 December 2021 344 hit(s) Oxides
    When illuminating a non-centrosymmetric material with light of energy higher than the bandgap, a net current appears because the electrons do not see the same electronic environment in one direction and the opposite direction, thus they hold a net momentum. This is the bulk photovoltaic effect (BPE), which depends on the light polarization.
  • Efficient spin pumping into metallic SrVO3 epitaxial films

    21 December 2021 301 hit(s) Oxides
    Spin-charge conversion requires materials with a large spin-orbit coupling, which is typically obtained in heavy metal (Pt, etc.) ions. Here we demonstrate spin pumping across interfaces between metallic SrVO3, where V is a 3d1 ion, epitaxial thin films and ferromagnetic Ni80Fe20.
  • Direct and Converse Flexoelectricity in Two-Dimensional Materials

    10 December 2021 344 hit(s) Oxides
    Building on recent developments in electronic-structure methods, we define and calculate the flexoelectric response of two-dimensional (2D) materials fully from first principles. In particular, we show that the open-circuit voltage response to a flexural deformation is a fundamental linear-response property of the crystal that can be calculated within the primitive unit cell of the flat configuration.
  • Determination of the Crystal Structures in the A-Site-Ordered YBaMn2O6 Perovskite

    03 December 2021 337 hit(s) Oxides
    We present a complete structural study of the successive phase transitions observed in the YBaMn2O6 compound with the layered ordering of cations on the perovskite A-site. We have combined synchrotron radiation X-ray powder diffraction and symmetry-adapted mode analysis to describe the distorted structures as pseudosymmetric with respect to the parent tetragonal structure.
  • High-Temperature Synthesis and Dielectric Properties of LaTaON2

    30 November 2021 366 hit(s) Oxides
    The development of new synthetic methodologies of perovskite oxynitrides is challenging but necessary for the search of new compounds and the investigation of new properties. Here, we report a new method of preparation of the perovskite LaTaON2 that has been investigated as a pigment and photocatalyst for water splitting.

INSTITUT DE CIÈNCIA DE MATERIALS DE BARCELONA, Copyright © 2020 ICMAB-CSIC | Privacy Policy | This email address is being protected from spambots. You need JavaScript enabled to view it.