SCIENTIFIC HIGHLIGHTS

14 December 2015

sustaa070ff1 hr

 and 

IOP Publishing Ltd • Superconductor Science and TechnologyVolume 28

A methodology of general validity to prepare epitaxial nanocomposite films based on the use of colloidal solutions containing different crystalline preformed oxide nanoparticles (ex situnanocomposites) is reported. The trifluoroacetate (TFA) metal–organic chemical solution deposition route is used with alcoholic solvents to grow epitaxial YBa2Cu3O7 (YBCO) films. For this reason stabilizing oxide nanoparticles in polar solvents is a challenging goal. We have used scalable nanoparticle synthetic methodologies such as thermal and microwave-assisted solvothermal techniques to prepare CeO2 and ZrO2 nanoparticles. We show that stable and homogeneous colloidal solutions with these nanoparticles can be reached using benzyl alcohol, triethyleneglycol, nonanoic acid, trifluoroacetic acid or decanoic acid as protecting ligands, thereby allowing subsequent mixing with alcoholic TFA solutions. An elaborate YBCO film growth analysis of these nanocomposites allows the identification of the different relevant growth phenomena, e.g. nanoparticles pushing towards the film surface, nanoparticle reactivity, coarsening and nanoparticle accumulation at the substrate interface. Upon mitigation of these effects, YBCO nanocomposite films with high self-field critical currents (Jc ~ 3–4 MA cm−2 at 77 K) were reached, indicating no current limitation effects associated with epitaxy perturbation, while smoothed magnetic field dependences of the critical currents at high magnetic fields and decreased effective anisotropic pinning behavior confirm the effectiveness of the novel developed approach to enhance vortex pinning. In conclusion, a novel low cost solution-derived route to high current nanocomposite superconducting films and coated conductors has been developed with very promising features.


Hits: 5320
Sustainable energy conversion & storage systems

Epitaxial YBa_sub2sub_Cu_sub3sub_O_sub7−xsub_ nanocomposite thin films from colloidal solutions



Also at ICMAB

  • Noncovalently Linked Metallacarboranes on Functionalized Magnetic Nanoparticles as Highly Efficient, Robust, and Reusable Photocatalysts in Aqueous Medium

    Information
    20 April 2021 139 hit(s) Energy
    A successful homogeneous photoredox catalyst has been fruitfully heterogenized on magnetic nanoparticles (MNPs) coated with a silica layer, keeping intact its homogeneous catalytic properties but gaining others due to the easy magnetic separation and recyclability. The amine-terminated magnetic silica nanoparticles linked noncovalently to H[3,3′-Co(1,2-C2B9H11)2]− (H[1]), termed MSNPs-NH2@H[1], are highly stable and do not produce any leakage of the photoredox catalyst H[1] in water. The magnetite MNPs were coated with SiO2 to provide colloidal stability and silanol groups to be tethered to amine-containing units.
  • Large-Scale Soft-Lithographic Patterning of Plasmonic Nanoparticles

    Information
    16 April 2021 214 hit(s) Energy
    Micro- and nanoscale patterned monolayers of plasmonic nanoparticles were fabricated by combining concepts from colloidal chemistry, self-assembly, and subtractive soft lithography. Leveraging chemical interactions between the capping ligands of pre-synthesized gold colloids and a polydimethylsiloxane stamp, we demonstrated patterning gold nanoparticles over centimeter-scale areas with a variety of micro- and nanoscale geometries, including islands, lines, and chiral structures (e.g., square spirals).
  • Disentangling Electron–Phonon Coupling and Thermal Expansion Effects in the Band Gap Renormalization of Perovskite Nanocrystals

    Information
    11 March 2021 273 hit(s) Energy
    The complex electron–phonon interaction occurring in bulk lead halide perovskites gives rise to anomalous temperature dependences, like the widening of the electronic band gap as temperature increases. However, possible confinement effects on the electron–phonon coupling in the nanocrystalline version of these materials remain unexplored. Herein, we study the temperature (ranging from 80 K to ambient) and hydrostatic pressure (from atmospheric to 0.6 GPa) dependence of the photoluminescence of ligand-free methylammonium lead triiodide nanocrystals with controlled sizes embedded in a porous silica matrix.
  • Laser fabrication of hybrid electrodes composed of nanocarbons mixed with cerium and manganese oxides for supercapacitive energy storage

    Information
    05 March 2021 276 hit(s) Energy
    Novel composite materials are being investigated for improving the energy storage performance of electrochemical capacitors. For this goal, synergistic effects via the combination of diverse types of materials are crucial. In this work, electrodes composed of reduced graphene oxide, multiwall carbon nanotubes, as well as cerium and manganese oxides were fabricated through reactive inverse matrix-assisted pulsed laser evaporation (RIMAPLE).
  • Predicting the photocurrent–composition dependence in organic solar cells

    Information
    02 March 2021 305 hit(s) Energy
    The continuous development of improved non-fullerene acceptors and deeper knowledge of the fundamental mechanisms governing performance underpin the vertiginous increase in efficiency witnessed by organic photovoltaics. While the influence of parameters like film thickness and morphology are generally understood, what determines the strong dependence of the photocurrent on the donor and acceptor fractions remains elusive.

INSTITUT DE CIÈNCIA DE MATERIALS DE BARCELONA, Copyright © 2020 ICMAB-CSIC | Privacy Policy | This email address is being protected from spambots. You need JavaScript enabled to view it.