SCIENTIFIC HIGHLIGHTS

Engineering Plasmonic Colloidal Meta-Molecules for Tunable Photonic Supercrystals
17 September 2021
Ordered arrays of metal nanoparticles offer new opportunities to engineer light–matter interactions through the hybridization of Rayleigh anomalies and localized surface plasmons. The generated surface lattice resonances exhibit much higher quality factors compared to those observed in isolated metal nanostructures. Template-induced colloidal self-assembly has already shown a great potential for the scalable fabrication of 2D plasmonic meta-molecule arrays, but the experimental challenge of controlling optical losses within the repeating units has so far prevented this approach to compete with more standard fabrication methods in the production of high-quality factor resonances.
In this manuscript, the optical properties of plasmonic arrays are investigated by varying the lattice parameter (between 200 and 600 nm) as well as the diameter of the gold colloidal building-blocks (between 11 ± 1 and 98 ± 6 nm). It is systematically studied how the internal architecture of the repeating gold-nanoparticle meta-molecules influences the optical response of the plasmonic supercrystals. Combining both experimental measurements and simulations, it is demonstrated how, reducing the size of the gold nanoparticles it is possible to switch from strong near-field plasmonic architectures to high-quality factors (>60) for lattice plasmon resonances located in the visible spectral range.
Hits: 408
Sustainable energy conversion & storage systems

Engineering Plasmonic Colloidal Meta-Molecules for Tunable Photonic Supercrystals


Pau Molet, Nicolás Passarelli, Luis A. Pérez, Leonardo Scarabelli, Agustín Mihi

Adv. Optical Mater. 2021, 2100761. 
DOI: https://doi.org/10.1002/adom.202100761

Also at ICMAB

  • Observation of second sound in a rapidly varying temperature field in Ge

    Information
    06 July 2021 509 hit(s) Energy
    Second sound is known as the thermal transport regime where heat is carried by temperature waves. Its experimental observation was previously restricted to a small number of materials, usually in rather narrow temperature windows. We show that it is possible to overcome these limitations by driving the system with a rapidly varying temperature field. High-frequency second sound is demonstrated in bulk natural Ge between 7 K and room temperature by studying the phase lag of the thermal response under a harmonic high-frequency external thermal excitation and addressing the relaxation time and the propagation velocity of the heat waves. These results provide a route to investigate the potential of wave-like heat transport in almost any material, opening opportunities to control heat through its oscillatory nature.

INSTITUT DE CIÈNCIA DE MATERIALS DE BARCELONA, Copyright © 2020 ICMAB-CSIC | Privacy Policy | This email address is being protected from spambots. You need JavaScript enabled to view it.