SCIENTIFIC HIGHLIGHTS

Defect landscape and electrical properties in solution-derived LaNiO3 and NdNiO3 epitaxial thin films
31 July 2018
B. Mundet, J. Jareño, J. Gazquez, M. Varela, X. Obradors, and T. Puig. Phys. Rev. Materials 2, 063607 

DOI:https://doi.org/10.1103/PhysRevMaterials.2.063607

In this work we evaluate the defects and the associated distortions present in tensile and compressive-strained chemical solution deposition–derived NdNiO3 (NNO) and LaNiO3 (LNO) thin films by means of aberration corrected scanning transmission electron microscopy. We elucidate a fundamental link between strain and the most common defect observed in nickelate films, the Ruddlesden-Popper fault (RPF), which will ultimately impinge on the electrical properties of the films. Overall, the concentration of RPF defects increases with the lattice mismatch. More specifically, LNO films are always metallic, although transitioning from compressive to tensile strain results in the appearance of RPFs and an increase of the resistivity. On the other hand, NNO films always behave as insulators under tensile strain, whereas under compressive strain the increase of the thickness makes the onset of the metal-to-insulator transition shift to higher temperatures.

Hits: 1982
Oxides for new-generation electronics

Defect landscape and electrical properties in solution-derived LaNiO3 and NdNiO3 epitaxial thin films



Also at ICMAB

  • Tuning the tilting of the spiral plane by Mn doping in YBaCuFeO5 multiferroic

    Information
    23 April 2021 85 hit(s) Oxides
    The layered perovskite YBaCuFeO5 (YBCFO) is considered one of the best candidates to high-temperature chiral multiferroics with strong magnetoelectric coupling. In RBaCuFeO5 perovskites (R: rare-earth or Y) A-site cations are fully ordered whereas their magnetic properties strongly depend on the preparation process. They exhibit partial cationic disorder at the B-site that generates a magnetic spiral stabilized through directionally assisted long range coupling between canted locally frustrated spins.
  • New Sensitive and Selective Chemical Sensors for Ni2+ and Cu2+ Ions: Insights into the Sensing Mechanism through DFT Methods

    Information
    09 April 2021 177 hit(s) Oxides
    We report the synthesis and theoretical study of two new colorimetric chemosensors with special selectivity and sensitivity to Ni2+ and Cu2+ ions over other metal cations in the CH3CN/H2O solution. Compounds (E)-4-((2-nitrophenyl)diazenyl)-N,N-bis(pyridin-2-ylmethyl)aniline (A) and (E)-4-((3-nitrophenyl)diazenyl)-N,N-bis(pyridin-2-ylmethyl)aniline (B) exhibited a drastic color change from yellow to colorless, which allows the detection of the mentioned metal cations through different techniques.
  • Silicon nanowires as acetone-adsorptive media for diabetes diagnosis

    Information
    06 April 2021 257 hit(s) Oxides
    Early detection of diabetes, a worldwide health issue, is key for its successful treatment. Acetone is a marker of diabetes, and efficient, non-invasive detection can be achieved with the use of nanotechnology. In this paper we investigate the effect of acetone adsorption on the electronic properties of silicon nanowires (SiNWs) by means of density functional theory.
  • Soft‐Chemistry‐Assisted On‐Chip Integration of Nanostructured α‐Quartz Microelectromechanical System

    Information
    30 March 2021 221 hit(s) Oxides
    The development of advanced piezoelectric α‐quartz microelectromechanical system (MEMS) for sensing and precise frequency control applications requires the nanostructuration and on‐chip integration of this material on silicon material.
  • Critical Effect of Bottom Electrode on Ferroelectricity of Epitaxial Hf0.5Zr0.5O2 Thin Films

    Information
    26 March 2021 258 hit(s) Oxides
    Epitaxial orthorhombic Hf0.5Zr0.5O2 (HZO) films on La0.67Sr0.33MnO3 (LSMO) electrodes show robust ferroelectricity, with high polarization, endurance and retention. However, no similar results have been achieved using other perovskite electrodes so far. Here, LSMO and other perovskite electrodes are compared.

INSTITUT DE CIÈNCIA DE MATERIALS DE BARCELONA, Copyright © 2020 ICMAB-CSIC | Privacy Policy | This email address is being protected from spambots. You need JavaScript enabled to view it.