Copper Oxide Nanocubes Wrapping Metals by Microwave Synthesis
28 September 2021
Copper and copper oxide nanoparticles (NPs) are industrially important. In particular, Cu-based nanocatalysts find applicability in electrocatalysis and photocatalysis, profiting from the accessible oxidation states of copper and a band gap in the visible region of the Cu2O phase. However, in this case, the fast recombination of the charge carriers compromises the final photocatalytic efficiency.
The combination of Cu2O with metals often results in higher and more stable photocatalytic efficiency. Here, the fabrication of noble metal NPs [Au, Ag, Pd, and Pt] and Cu2O heterostructures (HSs) by a microwave (MW)-assisted synthesis is presented.The selectivity of the MW technique with a fast two-step protocol enabled us to easily prepare these multicomponent nanoparticles in a short time (∼40 min). First, metal NPs (Au, Ag, or Pd) are synthesized through a MW-assisted polyol approach, and these NPs serve as nucleation seeds for cubic Cu2O wrapping. Other types of heterostructures were found when using smaller Pt NPs instead. Focusing on Au NPs as the core, we analyzed the effect of the gold to copper molar ratio on the shape yield of the nanocubes, reported their optic and plasmonic properties, and demonstrated the reproducibility and scalability of the synthetic routes. Here, we are providing a pioneering example of MW heating as a non-conventional energy source for a general chemical approach to attain a family of complex metal/metal oxide heterostructures.
Hits: 347
Bioactive materials for therapy and diagnosis

Copper Oxide Nanocubes Wrapping Metals by Microwave Synthesis

Miquel Torras and Anna Roig*

Cryst. Growth Des. 2021, XXXX, XXX, XXX-XXX
Publication Date:August 13, 2021

Also at ICMAB

  • Synchrotron-Based Fourier-Transform Infrared Micro-Spectroscopy (SR-FTIRM) Fingerprint of the Small Anionic Molecule Cobaltabis (dicarbollide) Uptake in Glioma Stem Cells

    09 November 2021 178 hit(s) Biomaterials
    The anionic cobaltabis (dicarbollide) [3,3′-Co(1,2-C2B9H11)2]−, [o-COSAN]−, is the most studied icosahedral metallacarborane. The sodium salts of [o-COSAN]− could be an ideal candidate for the anti-cancer treatment Boron Neutron Capture Therapy (BNCT) as it possesses the ability to readily cross biological membranes thereby producing cell cycle arrest in cancer cells.   BNCT is a cancer therapy based on the potential of 10B atoms to produce α particles that cross tissues in which the 10B is accumulated without damaging the surrounding healthy tissues, after being irradiated with low energy thermal neutrons.

INSTITUT DE CIÈNCIA DE MATERIALS DE BARCELONA, Copyright © 2020 ICMAB-CSIC | Privacy Policy | This email address is being protected from spambots. You need JavaScript enabled to view it.