SCIENTIFIC HIGHLIGHTS

Computer simulations of the interaction between SARS-CoV-2 spike glycoprotein and different surfaces
15 January 2021
A prominent feature of coronaviruses is the presence of a large glycoprotein spike protruding from a lipidic membrane. This glycoprotein spike determines the interaction of coronaviruses with the environment and the host. In this paper, we perform all atomic molecular dynamics simulations of the interaction between the SARS-CoV-2 trimeric glycoprotein spike and surfaces of materials.
We considered a material with high hydrogen bonding capacity (cellulose) and a material capable of strong hydrophobic interactions (graphite). Initially, the spike adsorbs to both surfaces through essentially the same residues belonging to the receptor binding subunit of its three monomers. Adsorption onto cellulose stabilizes in this configuration, with the help of a large number of hydrogen bonds developed between cellulose and the three receptor-binding domains of the glycoprotein spike. In the case of adsorption onto graphite, the initial adsorption configuration is not stable and the surface induces a substantial deformation of the glycoprotein spike with a large number of adsorbed residues not pertaining to the binding subunits of the spike monomers.
Hits: 1198
Bioactive materials for therapy and diagnosis

Computer simulations of the interaction between SARS-CoV-2 spike glycoprotein and different surfaces


David C. Malaspina and Jordi Faraudo

Biointerphases 15, 051008 (2020)
DOI: https://doi.org/10.1116/6.0000502

Also at ICMAB

  • Cobaltabis(dicarbollide) ([o-COSAN]−) as Multifunctional Chemotherapeutics: A Prospective Application in Boron Neutron Capture Therapy (BNCT) for Glioblastoma

    Information
    25 January 2022 153 hit(s) Biomaterials
    Purpose: The aim of our study was to assess if the sodium salt of cobaltabis(dicarbollide) and its di-iodinated derivative (Na[o-COSAN] and Na[8,8′-I2-o-COSAN]) could be promising agents for dual anti-cancer treatment (chemotherapy + BNCT) for GBM. Methods: The biological activities of the small molecules were evaluated in vitro with glioblastoma cells lines U87 and T98G in 2D and 3D cell models and in vivo in the small model animal Caenorhabditis elegans (C. elegans) at the L4-stage and using the eggs. Results: Our studies indicated that only spheroids from the U87 cell line have impaired growth after treatment with both compounds, suggesting an increased resistance from T98G spheroids, contrary to what was observed in the monolayer culture, which highlights the need to employ 3D models for future GBM studies.
  • Ultrafast Interface Charge Separation in Carbon Nanodot–Nanotube Hybrids

    Information
    18 January 2022 250 hit(s) Biomaterials
    Carbon dots are an emerging family of zero-dimensional nanocarbons behaving as tunable light harvesters and photoactivated charge donors. Coupling them to carbon nanotubes, which are well-known electron acceptors with excellent charge transport capabilities, is very promising for several applications.
  • Polylactide, Processed by a Foaming Method Using Compressed Freon R134a, for Tissue Engineering

    Information
    17 December 2021 264 hit(s) Biomaterials
    Fabricating polymeric scaffolds using cost-effective manufacturing processes is still challenging. Gas foaming techniques using supercritical carbon dioxide (scCO2) have attracted attention for producing synthetic polymer matrices; however, the high-pressure requirements are often a technological barrier for its widespread use. Compressed 1,1,1,2-tetrafluoroethane, known as Freon R134a, offers advantages over CO2 in manufacturing processes in terms of lower pressure and temperature conditions and the use of low-cost equipment.
  • Endovascular administration of magnetized nanocarriers targeting brain delivery after stroke

    Information
    07 December 2021 414 hit(s) Biomaterials
    The increasing use of mechanical thrombectomy in stroke management has opened the window to local intraarterial brain delivery of therapeutic agents. In this context, the use of nanomedicine could further improve the delivery of new treatments for specific brain targeting, tracking and guidance. In this study we take advantage of this new endovascular approach to deliver biocompatible poly(D-L-lactic-co-glycolic acid) (PLGA) nanocapsules functionalized with superparamagnetic iron oxide nanoparticles and Cy7.5 for magnetic targeting, magnetic resonance and fluorescent molecular imaging.
  • Synchrotron-Based Fourier-Transform Infrared Micro-Spectroscopy (SR-FTIRM) Fingerprint of the Small Anionic Molecule Cobaltabis (dicarbollide) Uptake in Glioma Stem Cells

    Information
    09 November 2021 334 hit(s) Biomaterials
    The anionic cobaltabis (dicarbollide) [3,3′-Co(1,2-C2B9H11)2]−, [o-COSAN]−, is the most studied icosahedral metallacarborane. The sodium salts of [o-COSAN]− could be an ideal candidate for the anti-cancer treatment Boron Neutron Capture Therapy (BNCT) as it possesses the ability to readily cross biological membranes thereby producing cell cycle arrest in cancer cells.   BNCT is a cancer therapy based on the potential of 10B atoms to produce α particles that cross tissues in which the 10B is accumulated without damaging the surrounding healthy tissues, after being irradiated with low energy thermal neutrons.

INSTITUT DE CIÈNCIA DE MATERIALS DE BARCELONA, Copyright © 2020 ICMAB-CSIC | Privacy Policy | This email address is being protected from spambots. You need JavaScript enabled to view it.